Sommaire
Sommaire

Introduction ... 12

Chapitre I. Partie Bibliographique. .. 16

1-1) Définition et intérêt des nanocomposites ... 16
1-2) Les systèmes thermodurcissables ... 16
 1-2-1) Les mécanismes de réaction entre époxyde et durcisseur ... 17
 1-2-2) Les mélanges de polymères Thermodurcissable/Thermoplastique (TD / TP) : le phénomène de séparation de phase .. 19
1-3) Les nanocomposites à charges lamellaires ... 23
 1-3-1) Définition, classification et structure ... 23
 1-3-2) Structuration des nanocomposites à charges lamellaires ... 25
 1-3-3) Stratégies de mise en œuvre des nanocomposites polymère/argile .. 26
 1-3-4) les propriétés physiques .. 28
1-4) Structuration des réseaux époxyde .. 32
 1-4-1) Rôle des objets lamellaires inorganiques sur la structuration d’un réseau époxyde 32
 1-4-2) Rôle d’un thermoplastique (initialement miscible) sur la structuration d’un réseau époxyde. Influence de la nature du durcisseur .. 34
 1-4-3) Synergie des mélanges ternaire TP/TD/objets lamellaires .. 35

Conclusions. ... 39
Références bibliographiques. .. 41

Chapitre 2. Matériaux et techniques expérimentales. ... 48

2-1) Présentation des matériaux .. 48
 2-1-1) Le monomère époxyde type DGEBA ... 48
 2-1-2 Les durcisseurs amine .. 49
 A) Amine 4, 4’-méthylènebis [3-chloro-2, 6-diéthylaniline] (MCDEA) 49
 B) Amine 4,4’ Methylene dianiline (MDA) .. 50
 2-1-3) Le thermoplastique : PMMA .. 50
 A) PMMA commercial d’une grande masse molaire .. 50
 B) PMMA d’une masse molaire faible ... 51
 2-1-4) L’argile Cloisite 30B. .. 51
2-2) Techniques expérimentales. .. 53
 2-2-1) Analyse physico chimique des matériaux .. 53
 A) Calorimétrie différentielle à balayage ... 53
B) Rhéologie des systèmes réactifs .. 53

2-2-2) Analyses de la séparation de phase. .. 54
 A) Méthode du point de trouble. .. 54
 B) Diélectrométrie. .. 54

2-2-3) Analyse morphologique des matériaux. .. 55
 A) Microscopie électronique à transmission (TEM). 55
 B) Microscopie Électronique à Balayage (MEB). 55
 C) Diffraction des rayons X aux grands angles (WAXS). 55
 D) Diffusion des rayons X aux petits angles (SAXS). 56
 E) Rhéologie des systèmes non réactifs en mode dynamique 57

2-2-4) Analyses de mesures mécaniques des matériaux. 57
 A) Analyse thermomécanique dynamique. ... 57
 B) Analyse mécanique statique : rigidité et fracture. 58

Conclusions. .. 60

Références bibliographiques. ... 61

Chapitre 3. Réactivité et nanostructuration des mélanges binaires. 65

3-1) Etude de la réactivité du système époxyde-amine (DGEBA/MDA). 65

3-2) Contrôle de la nanostructuration des mélange binaires

DGEBA/PMMA: Rôle de l’amine et du taux de thermoplastique. 71

3-2-1) Influence de la nature du durcisseur. .. 71

3-2-2) Influence du taux de thermoplastique. 73
 A) Mise en évidence de la séparation de phase. 73
 B) Caractérisation des transformations structurales. 77
 C) Cinétique de la réaction de la formation du réseau 81

3-3) Contrôle de la nanostructuration des mélanges binaires PMMA/argile :

Effet des interactions physicochimiques et du procédé d’élaboration des
mélanges. .. 82

3-3-1) Elaboration des nanocomposites PMMA/argile: comparaison du
procédé voie fondu versus voie solvant. .. 83
 A) Avec un PMMA de masse molaire élevée (50 000 gr/mol). 83
 A-I) Description du procédé d’élaboration. 83
 A-I-1) Voie fondu. ... 83
 A-I-2) Voie solvant. .. 83
 A-I-3) Voie poudre. .. 84
 A-II) Analyse de la dispersion. ... 85
 A-II-1) Pour les voies solvant et fondu. 85
 A-II-2) Pour la voie poudre. .. 88
 B) Avec un PMMA de faible masse molaire (1000 g/mol). 91
Chapitre 4. Contrôle de la nanostructuration dans les mélanges ternaires Epoxye/PMMA/argile. ... 105

4-1) Stratégies d’élaboration des mélanges ternaires: Epoxye/MDA/PMMA (50000 g/mol)/argile. ... 106
 4-1-1) Mélange ternaire obtenu par la voie mélange miscible. 106
 4-1-2) Mélange ternaire réalisé par la voie solvant. 106
 4-1-3) Caractérisation de la cinétique de réaction des mélanges ternaires Epoxye/PMMA/Argile obtenus par la voie mélange miscible. 107
 4-2) Construction des morphologies des mélanges ternaires lors de la réaction de polymérisation. Utilisation de la diffusion des rayons X aux petits angles. ... 109
 4-3) Caractérisation de la nanostructuration des mélanges ternaires Thermoplastique/Thermodule/Argile à l’état final. Influence du procédé d’élaboration. ... 116
 A) Analyse par diffraction des rayons X. 116
 B) Analyse par microscopie électronique à transmission (TEM). 117
 C) Analyse par diffusion des rayons X. .. 120
 D) Analyse par spectroscopie mécanique dynamique. 122
 4-4) Caractérisation des propriétés mécaniques finales à l’état solide des mélanges ternaires. ... 123
 4-4-1) Effet du procédé d’élaboration. ... 124
 4-4-2) Effet de la masse molaire du thermoplastique. 129
 A) Analyse viscoélastique. ... 129
 B) Analyse mécanique. ... 130
 4-4-3) Effet du traitement organophile de la montmorillonite. 132
 4-4-4) Influence de l’utilisation du solvant. 135
Conclusions. .. 138
Références bibliographiques. ... 140
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conclusion générale.</td>
<td>144</td>
</tr>
<tr>
<td>ANENXE.</td>
<td>149</td>
</tr>
</tbody>
</table>